Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892921

RESUMO

Mahogunin Ring Finger 1 (MGRN1), a ubiquitin ligase expressed in melanocytes, interacts with the α melanocyte-stimulating hormone receptor, a well-known melanoma susceptibility gene. Previous studies showed that MGRN1 modulates the phenotype of mouse melanocytes and melanoma cells, with effects on pigmentation, shape, and motility. Moreover, MGRN1 knockdown augmented the burden of DNA breaks in mouse cells, indicating that loss of MGRN1 promoted genomic instability. However, data concerning the roles of MGRN1 in human melanoma cells remain scarce. We analyzed MGRN1 knockdown in human melanoma cells. Transient MGRN1 depletion with siRNA or permanent knockdown in human melanoma cells by CRISPR/Cas9 caused an apparently MITF-independent switch to a more dendritic phenotype. Lack of MGRN1 also increased the fraction of human cells in the S phase of the cell cycle and the burden of DNA breaks but did not significantly impair proliferation. Moreover, in silico analysis of publicly available melanoma datasets and estimation of MGRN1 in a cohort of clinical specimens provided preliminary evidence that MGRN1 expression is higher in human melanomas than in normal skin or nevi and pointed to an inverse correlation of MGRN1 expression in human melanoma with patient survival, thus suggesting potential use of MGRN1 as a melanoma biomarker.

2.
PLoS Biol ; 19(11): e3001455, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748530

RESUMO

Several studies have revealed a correlation between chronic inflammation and nicotinamide adenine dinucleotide (NAD+) metabolism, but the precise mechanism involved is unknown. Here, we report that the genetic and pharmacological inhibition of nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in the salvage pathway of NAD+ biosynthesis, reduced oxidative stress, inflammation, and keratinocyte DNA damage, hyperproliferation, and cell death in zebrafish models of chronic skin inflammation, while all these effects were reversed by NAD+ supplementation. Similarly, genetic and pharmacological inhibition of poly(ADP-ribose) (PAR) polymerase 1 (Parp1), overexpression of PAR glycohydrolase, inhibition of apoptosis-inducing factor 1, inhibition of NADPH oxidases, and reactive oxygen species (ROS) scavenging all phenocopied the effects of Nampt inhibition. Pharmacological inhibition of NADPH oxidases/NAMPT/PARP/AIFM1 axis decreased the expression of pathology-associated genes in human organotypic 3D skin models of psoriasis. Consistently, an aberrant induction of NAMPT and PARP activity, together with AIFM1 nuclear translocation, was observed in lesional skin from psoriasis patients. In conclusion, hyperactivation of PARP1 in response to ROS-induced DNA damage, fueled by NAMPT-derived NAD+, mediates skin inflammation through parthanatos cell death.


Assuntos
Inflamação/patologia , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Parthanatos , Poli(ADP-Ribose) Polimerases/metabolismo , Pele/patologia , Animais , Fator de Indução de Apoptose/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Larva/metabolismo , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Parthanatos/efeitos dos fármacos , Parthanatos/genética , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Secretadas Inibidoras de Proteinases/deficiência , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Psoríase/genética , Psoríase/patologia , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo
3.
Pigment Cell Melanoma Res ; 34(4): 748-761, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33884776

RESUMO

Melanocortin-1 Receptor (MC1R), when stimulated by alpha-melanocyte-stimulating hormone (α-MSH), is a driver of eumelanogenesis. Brown/black eumelanin is an effective filter against ultraviolet radiation (UVR) and is a scavenger of free radicals. Several polymorphic variants of MC1R are frequent in red-head people. These polymorphisms reduce the ability of MC1R to promote eumelanogenesis after its activation and spontaneous pheomelanogenesis take place. Since pheomelanin can act as an endogenous photosensitizer, people carrying MC1R polymorphisms are more susceptible to skin cancer. Here, we summarize current knowledge on the biology of MC1R beyond its ability to drive eumelanogenesis. We analyze its capacity to cope with oxidative insult and consequent DNA damage. We describe its ability to transduce through different pathways. We start from the canonical pathway, the cAMP/protein kinase A (PKA) pathway mainly involved in promoting eumelanogenesis, and protection from oxidative damage, and we then move on to describe more recent knowledge concerning ERK pathways, phosphoinositide 3-kinase (PI3K) pathway/AKT, and α-MSH/Peroxisome proliferators activated receptor-γ (PPAR-γ) connection. We describe MC1R polymorphic variants associated with melanoma risk which represent an open window of clinical relevance.


Assuntos
Pleiotropia Genética , Receptor Tipo 1 de Melanocortina/metabolismo , Pigmentação da Pele , alfa-MSH/metabolismo , Animais , Dano ao DNA , Reparo do DNA , Humanos , Receptor Tipo 1 de Melanocortina/genética , Pigmentação da Pele/genética
4.
Cancers (Basel) ; 12(10)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019669

RESUMO

The mouse mahoganoid mutation abrogating Mahogunin Ring Finger-1 (MGRN1) E3 ubiquitin ligase expression causes hyperpigmentation, congenital heart defects and neurodegeneration. To study the pathophysiology of MGRN1 loss, we compared Mgrn1-knockout melanocytes with genetically matched controls and melan-md1 (mahoganoid) melanocytes. MGRN1 knockout induced a more differentiated and adherent phenotype, decreased motility, increased the percentage of cells in the S phase of the cell cycle and promoted genomic instability, as shown by stronger γH2AX labelling, increased burden of DNA breaks and higher abundance of aneuploid cells. Lack of MGRN1 expression decreased the ability of melanocytes to cope with DNA breaks generated by oxidizing agents or hydroxyurea-induced replicative stress, suggesting a contribution of genomic instability to the mahoganoid phenotype. MGRN1 knockout in B16-F10 melanoma cells also augmented pigmentation, increased cell adhesion to collagen, impaired 2D and 3D motility and caused genomic instability. Tumors formed by Mgrn1-KO B16-F10 cells had lower mitotic indices, fewer Ki67-positive cells and showed a trend towards smaller size. In short-term lung colonization assays Mgrn1-KO cells showed impaired colonization potential. Moreover, lower expression of MGRN1 is significantly associated with better survival of human melanoma patients. Therefore, MGRN1 might be an important phenotypic determinant of melanoma cells.

5.
Exp Dermatol ; 29(7): 610-615, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32474972

RESUMO

The melanocortin 1 receptor (MC1R) is a major determinant of skin pigmentation and sensitivity to ultraviolet radiation. When stimulated by its natural agonists, it promotes the switch from synthesis of poorly photoprotective and lightly colored pheomelanins to production of photoprotective and darker eumelanins. In addition to an unusually high number of single nucleotide polymorphisms, the MC1R is expressed as 3 protein-coding splice variants. Two transcripts display different 5' untranslated sequences but yield the same open reading frame corresponding to the canonical 317 aminoacids protein (termed MC1R). An alternative transcript named MC1R-203 encodes for a 382 amino acids protein of poorly characterized functional properties containing an additional 65 aminoacids C-terminal extension. Given the known roles of the MC1R C-terminal extension in forward trafficking, coupling to intracellular effectors and desensitization, the different structure of this domain in MC1R and MC1R-203 may lead to significant functional alteration(s). We have assessed the functional properties of MC1R-203, as compared with the canonical MC1R form. We show that unstimulated HBL human melanoma cells express the MC1R-203 spliceoform, although at much lower levels than canonical MC1R. When expressed in heterologous HEK293 cells, the presence of the 65 aminoacid-long cytosolic extension immediately after Cys316 in MC1R-203 did not impair the intracellular stability of the protein, but it interfered with functional coupling to the cAMP cascade and with the ubiquitylation of ARRB2 associated with MC1R desensitization. Conversely, MC1R-203 retained full capacity to activate ERK1/2 signaling. Accordingly, MC1R-203 displays biased signaling when expressed in HEK293 cells.


Assuntos
Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/biossíntese , Expressão Gênica , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas , Ubiquitinação , beta-Arrestina 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA